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Energy Stable SBP-FDTD Methods for
Maxwell–Duffing Models in Nonlinear Photonics

Daniel Appelö , Vrushali A. Bokil , Yingda Cheng, and Fengyan Li

Abstract—We consider electromagnetic models that describe
nonlinear optical phenomenon in which the nonlinear polarization
is driven by the electric field and modeled as anharmonic oscilla-
tor(s). These models are given by Duffing equations and incorporate
both nonlinearity and dispersion. Using the auxiliary differential
equation approach, our discretizations of the coupled Maxwell–
Duffing models are high-order and energy-stable finite-difference
time-domain (FDTD) methods of so-called summation by parts
(SBP) type. Boundary and interface conditions are handled by the
simultaneous approximation technique (SAT).

Index Terms—Kerr effect, Maxwell–Duffing, nonlinear
photonics, simultaneous approximation term (SAT), summation
by parts (SBP).

I. INTRODUCTION

A
CCURATE, stable, and efficient simulation of wave prop-
agation in optical media is becoming increasingly impor-

tant as high-power lasers become more common both in the
laboratory and industrial setting. It is well known that high-order
accurate methods are more computationally efficient than low
(second order and below)-order accurate methods to achieve
high resolution in many applications. Despite this fact, it is
still very common to use the Yee finite-difference time-domain
(FDTD) scheme for electromagnetic computations. A reason
for the persisting popularity of the Yee-FDTD scheme is its
simplicity, combined with its ability to preserve energy on the
discrete grid.

In this article, we consider energy-stable, staggered, and non-
staggered finite-difference discretizations of Maxwell’s equa-
tions in a nonmagnetic dispersive nonlinear optical medium
using summation by parts (SBP) operators [1]. Using the aux-
iliary differential equation (ADE) technique [2], we append
to Maxwell’s equations constitutive laws involving ordinary
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differential equations (ODEs) that model the time evolution of
the macroscopic polarization (average dipole moment per unit
volume). In particular, the nonlinearity appears in the consti-
tutive laws due to the response of the medium to the incident
electromagnetic fields, and is only present in the ODEs for
the time evolution of the polarization. The polarization models
that we consider below, called Duffing models, only contain
nonlinearity in the zeroth-order term, and we can directly apply
to these models the SBP methods developed by Nordström and
Gustafsson for Maxwell’s equations in linear and nondispersive
materials [3]. We show that our adaptations to the Maxwell–
Duffing nonlinear model are also high order, energy stable, and
conserve a discrete version of the continuous energy of the
nonlinear physical system.

We derive the energy analysis of the SBP method for the
semidiscrete system only. In order to preserve a fully discrete en-
ergy and in order to achieve a uniformly high-order method, time
integrators need to be chosen carefully. We note that the second-
order accurate fully discrete energy stable time discretizations,
that we derived in [4], could also be applied to the Maxwell–
Duffing models in conjunction with the spatial discretization
considered here. In this article, however, we consider both
explicit Runge–Kutta and Taylor methods, as well as implicit
Runge–Kutta methods based on Gauss–Legendre quadrature.
The use of Gauss–Legendre quadrature makes the resulting
(collocation) Runge–Kutta method symplectic. Of course, there
is no guarantee that a symplectic method will preserve energy
exactly (although a nearby energy will be preserved), so we
settle for solving the nonlinear system of equations approxi-
mately using the so-called spectral deferred correction (SDC)
method [5], [6]. In SDC, the nonlinear system is turned into
a fixed point iteration. If the fixed point is found to machine
precision, then the SDC solution is the same as the (symplectic)
Runge–Kutta solution, but if the iteration is terminated based
on order-of-accuracy consideration, the symplectic property is
only approximately satisfied. Despite this approximation and
the fact that symplecticity does not imply energy conservation,
we demonstrate through numerical examples that (at least for
the models considered here) very good energy conservation
properties are attainable when SDC methods are used.

To model nonlinearity and dispersion in optical phenomenon,
we consider a general class of polarization models called Duff-

ing equations [7]. Historically, the Duffing equation, which is
named after Georg Duffing, is a nonlinear second-order ODE
modeling the free and forced harmonic vibration of an oscillator
in which the stiffness force has quadratic and cubic terms [8].
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Subsequently, the label Duffing equation has been used to de-
scribe any oscillator that has a cubic stiffness term, regardless
of the type of damping or excitation [8]. In nonlinear optics,
Duffing equations are used to model the polarization accounting
for dispersion and nonlinearity related to third-order effects in
optical and photonic materials. These equations include the finite
and retarded response time of the medium and are advantageous
in studying the propagation characteristics of ultrashort laser
pulses [9]. In this article, we consider a variety of Maxwell–
Duffing models and their discretizations by the SBP methods
to simulate nonlinear optical phenomenon. In particular, we
present the construction of high-order-in-space SBP methods
and simultaneous approximation terms, along with high-order
time discretizations, and we demonstrate the effectiveness of our
new discretizations on a variety of test problems.

The rest of the article is organized as follows. In Section II,
we introduce the models for simulating nonlinear optical phe-
nomenon, and in Section III, we describe the numerical dis-
cretizations. In Section IV, numerical experiments are reported.
Section V concludes the article.

II. MODELS AND CONSTITUTIVE LAWS FOR NONLINEAR

OPTICAL MATERIALS

To observe nonlinear effects in common materials, high-
intensity light sources, such as lasers, are required, and the
particular nonlinear effects observed depend on which term
is dominant in the electric polarization [10]. We will consider
materials in which the dominant nonlinearities are of the third
order (such as optical glass fibers) and include instantaneous as
well as delayed material responses.

Using the ADE approach, we append to Maxwell’s partial
differential equations (PDEs) a system of ODEs describing the
nonlinear relationship between the macroscopic polarization
vector field P and the electric field E. Our approach follows
the development in [11]. The hybrid system of Maxwell PDEs
and auxiliary ODEs are then simultaneously evolved in time.

Maxwell’s equations in a nonmagnetic, nonconductive
medium Ω ⊂ R

d, d = 1, 2, 3, T > 0, containing no free
charges, govern the dynamic evolution of the electric field E

and the magnetic field H. The evolution equations are

µ0∂tH+∇×E = 0, in (0, T ]× Ω (1a)

ǫ0ǫ∞∂tE+ ǫ0J−∇×H = 0, in (0, T ]× Ω (1b)

∇ ·B = 0, ∇ ·D = 0, in (0, T ]× Ω (1c)

The electric flux density D, and the magnetic induction B, are
related to the electric field and magnetic field, respectively, via
the constitutive laws

D = ǫ0(ǫ∞E+P), B = µ0H (2)

with the polarization current density, J, defined as the time
derivative of the macroscopic polarization, i.e., J = ∂tP. The
parameter ǫ0 is the electric permittivity of free space, while µ0 is
the magnetic permeability of free space. The term ǫ∞E captures
the linear instantaneous response of the material to the EM fields,
with ǫ∞ defined as the relative electric permittivity in the limit

of infinite frequencies. The macroscopic (electric) polarization

P includes both linear and nonlinear effects, and is related to
the electric field through different mechanisms depending on
the optical phenomenon under consideration. In this work, we
focus on general Maxwell–Duffing dispersive models.

The Duffing equation, for the electric polarization, models
high-order effects by including both nonlinearity and dispersion,
and can be written in a general form as

∂2
P

∂t2
+

1

τ

∂P

∂t
+ ω2

0PF (P) = ω2
pE (3)

with a range of choices for F (P). Here ω0 and ωp are the
resonance and plasma frequencies of the medium, respectively,
and τ−1 is a damping constant. In this article, we will consider
an Nth-order polynomial model for the Duffing equation, given
as

F (P) = FPMD(P) :=

NPMD
∑

l=0

λ2l|P|2l (4)

with NPMD ∈ N, NPMD ≥ 1. We refer to the system of
equations (1)–(4) as the Nth Order polynomial Maxwell–

Duffing (PMD) model. This includes as special cases the
cubic-exponential Maxwell–Duffing (C-EMD) model (NPMD =
1, λ0 = 1, λ2 = α), the quintic-exponential Maxwell–Duffing

(Q-EMD) model (NPMD = 2, λ0 = 1, λ2 = α, λ4 = α2/2),
and in general an Nth-order polynomial exponential Maxwell–

Duffing (P-EMD) model which are all approximations of the
exponential Maxwell–Duffing (EMD) model with F (P) :=
exp(α|P|2).

We note that the PMD model is more general in that it incor-
porates the C-EMD, Q-EMD, and higher order approximations
P-EMD of the EMD, but can also be used with other parameters,
λ2l, that are not approximations of the EMD, as is suggested by
our energy estimates below.

We note that if F (P) = 1, the Duffing model reduces to the
linear Lorentz dispersive model. On the other hand, as pointed
out in [12], for a specific function form [different than (4)] of
F (P), under certain assumptions, the Duffing model (3) will
reproduce the Kerr model, another widely used nonlinear model
to describe cubic nonlinear effects such as the Kerr effect [13].
We refer the reader to our recent work [14], on the construction
of energy stable FDTD approximations of Maxwell’s equations
along with the nonlinear Kerr–Raman model for polarization.

The Maxwell–Duffing models need to be closed by initial
and boundary conditions on [0, T ]× Ω. Here we will exclu-
sively consider perfect electric conductors (PEC) resulting in
homogeneous Dirichlet boundary conditions on the tangential
components of the electric field on ∂Ω, the boundary of the
domain Ω.

A. Energy Estimate in Two Dimensions

In two dimensions, assuming a transverse electric mode, the
electric field, E = (Ex, Ey), and polarization, P = (P x, P y),
have two components each that are incident in the (x, y) plane,
while the magnetic field has one component, Hz , transverse to
the electric field out of this plane. Using the polarization current
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density J = (Jx, Jy), and assuming the Duffing model (3) to
be damping-free (τ−1 = 0), we rewrite (3) in first-order form as

∂J

∂t
= −ω2

0PFPMD(P) + ω2
pE. (5)

We assume the PEC boundary conditions for the electric field
on ∂Ω. An energy identity for this model can be obtained
using the energy method as follows. Multiplying (5) by ε0/ω

2
p,

multiplying each equation in (1a), (1b), and (5) by appropriate
quantities and summing over the domain, taking norms, together
with integration by parts in (1b), we obtain the energy identity

1

2

d

dt
E(t) = 0 (6)

where, the time-dependent energy of the PDM model denoted
as E(t) is defined as

E(t) := µ0‖Hz‖2 + ε0ε∞‖E‖2

+
ε0
ω2
p

‖J‖2 + ε0ω
2
0

ω2
p

NPMD
∑

l=0

λ2l

1 + l
(‖P‖2)1+l. (7)

Equation (6) implies that the energy E is constant in time. Here
‖ · ‖ is the standard L2 norm with respect to the spatial domain,
induced by the standard L2 inner product (·, ·). Note that the
damped case can be treated analogously but that E ′(t) ≤ 0 in
the presence of damping (τ−1 
= 0.)

III. NUMERICAL METHODS

A. Summation by Parts (SBP) Finite Difference Methods

The main idea behind summation by parts finite differences is
to design difference approximations that mimic the integration
by parts formula, which in one dimension on [xL, xR] ⊂ R, can
be written as

∫ xR

xL

u(x)vx(x)dx = −
∫ xR

xL

ux(x)v(x)dx

+ u(xR)v(xR)− u(xL)v(xL) (8)

so that the energy analysis of the continuous problem can
be directly applied to the semidiscretization (in space) of the
governing equations at hand.

As an illustrative example of deriving an energy identity,
consider the 1-D linear version of the PMD model withNPMD =
0, λ0 = 1, governing the electric and magnetic fields, E and H ,
in a nonmagnetic dispersive optical medium. From (1)–(3), we
have the following 1-D model:

ε0ε∞Et = Hx − ε0J (9a)

µ0Ht = Ex (9b)

Pt = J (9c)

Jt = −J/τ − ω2
0P + ω2

pE. (9d)

Following similar steps as in the 2-D case above we arrive at an
energy identity. In particular, multiplying the above equations
by suitable quantities and integrating over the domain Ω, we

obtain the equations

(ε0ε∞E,Et) = (E,Hx)− ε0(E, J)

(µ0H,Ht) = (H,Ex)

ε0ω
2
0

ω2
p

(P, Pt) =
ε0ω

2
0

ω2
p

(P, J)

ε0
ω2
p

(J, Jt) = − ε0
ω2
pτ

(J, J)− ε0ω
2
0

ω2
p

(J, P ) + ǫ0(J,E).

Summing up these equations we have

1

2

d

dt

(

ε0ε∞‖E‖2 + µ0‖H‖2 + ε0ω
2
0

ω2
p

‖P‖2 + ε0
ω2
p

‖J‖2
)

= (E,Hx) + (Ex, H)− ε0
ω2
pτ

‖J‖2 = [EH]xR

xL
− ε0

ω2
pτ

‖J‖2.

Here the last equality follows from an integration by parts (IBP)
in either of the terms (E,Hx), (Ex, H).

The above energy estimate implies that, given suitable bound-
ary conditions on E and H (for example E = 0 on the bound-
ary), the initial boundary value problem is well-posed, i.e., the
solution depends continuously on data (see, e.g., [15]).

Finite difference operators with the SBP property satisfy a dis-
crete version of the continuous IBP formula (8). Precisely, given
vector approximations Eh, Hh ∈ R

n+1 to E and H , defined
on a grid xi = xL + ih, i = 0, . . . , n, h = (xR − xL)/n, SBP

operators for the first derivatives D ≡ R−1Q are constructed so
that

(Eh)TRDHh + (Hh)TRDEh = Eh
nH

h
n − Eh

0H
h
0 .

Here R is a diagonal and positive definite matrix defining an
inner product (and the induced norm), Q is a matrix with the
property Q+QT = ene

T
n − e0e

T
0 , with ej being the jth unit

vector. For the actual construction of SBP operators, we refer
readers to the original paper by Kreiss and Scherer [16], and the
paper by Strand [17], that contain many of the early operators
and the more recent review by Svärd and Nordström [1]. Here,
we simply assume that SBP operators exist. Next, we illustrate
how these SBP operators can be used to simulate nonlinear optics
problems in an accurate and stable manner.

The energy analysis is not changed by lower order terms.
Thus, we illustrate the semidiscrete energy analysis using SBP
operators for the linear 1-D problem (9) by suppressing the lower
order terms in (9a). Using an SBP operator D to approximate
∂/∂x, we obtain

ε0ε∞Eh
t = DHh (10)

µ0H
h
t = DEh (11)

to approximate (9a) and (9b). Multiplying the above equations
by (Eh)TR and (Hh)TR, respectively, followed by adding the
resulting equations we find

1

2

d

dt

(

ε0ε∞‖Eh‖2R + µ0‖Hh‖2R
)

= Eh
nH

h
n − Eh

0H
h
0 .

The above equality illustrates that the change of energy is con-
trolled by the approximations to the electric and magnetic fields
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Fig. 1. Schematic of a two block computational domain. The blocks occupy
x ∈ [xL, xI] and x ∈ [xI, xR]. The continuity of the fields and the PEC bound-
ary conditions are weakly enforced by SAT terms.

on the boundary. Below we discuss how to chose penalty terms
to handle interface coupling and physical boundary conditions.
A schematic of the computational setup can be found in Fig. 1.

1) Interfaces: Consider an interface between two grids with
E+,h, H+,h, E−,h, H−,h denoting the approximations to the
right and to the left of the interface. To couple the two domains,
we add “zeros,” so-called simultaneous approximation terms

(SATs), [18], to the approximation of the governing equations.
Focusing only on the terms near the interface the scheme takes

the form

ε−0 ε
−
∞E−,h

t = DH−,h − γR−1en

(

H−,h
n −H+,h

0

)

µ−
0H

−,h
t = DE−,h − (1− γ)R−1en

(

E−,h
n − E+,h

0

)

ε+0 ε
+
∞E+,h

t = DH+,h + (1− γ)R−1e0

(

H+,h
0 −H−,h

n

)

µ+
0 H

+,h
t = DE+,h + γR−1e0

(

E+,h
n − E−,h

0

)

.

Multiplying by (E−,h)TR, (H−,h)TR, (E+,h)TR, (H+,h)TR,
respectively, and adding the resulting equations yields

1

2

d

dt

∑

s∈{+,−}

(

εs0ε
s
∞‖Es,h‖2R + µs

0‖Hs,h‖2R
)

= −γE−,h
n

(

H−,h
n −H+,h

0

)

− (1− γ)H−,h
n

(

E−,h
n − E+,h

0

)

+ (1− γ)E+h
0

(

H+,h
0 −H−,h

n

)

+ γH+h
0

(

E+,h
n − E−,h

0

)

+ E−,h
n H−,h

n − E+,h
0 H+,h

0 = 0.

This shows that the energy is conserved for any choice of γ.
2) Boundary Conditions: Boundary conditions are easily im-

posed through the SAT. For example, if we want to enforce
homogeneous boundary conditions on E to the right we can
assume there is a material to the right and take E+,h

0 = 0 and

H+,h
0 = H−,h

n in the formulas above.
3) Dissipative Methods: We finally note that energy dissi-

pating methods can be obtained by adding terms of the form

ε−0 ε
−
∞E−,h

t = · · · − βR−1en

(

E−,h
n − E+,h

0

)

µ−
0H

−,h
t = · · · − βR−1en

(

H−,h
n −H+,h

0

)

ε+0 ε
+
∞E+,h

t = · · · − βR−1e0

(

E+,h
0 − E−,h

n

)

µ+
0 H

+,h
t = · · · − βR−1e0

(

H+,h
n −H−,h

0

)

with β > 0.

Remark 3.1: The structure of the simultaneous approxima-
tion term is similar to the numerical flux in discontinuous
Galerkin (DG) methods, in which the parameter γ interpo-
lates between central (γ = 0.5) and alternating fluxes (γ = 0
or γ = 1) and the parameter β adds an upwind component to
the numerical flux. In DG methods the choice of numerical
flux can have significant effect on the overall accuracy of the
method but here, as illustrated in the numerical experiments,
the difference between the choices of γ and β is small. This
is potentially because the SAT terms only apply at the domain
boundary, unlike in DG schemes, the flux terms appear in all
cell boundaries.

4) Multiple Dimensions: The generalization of the above
procedure to multiple dimensions is straightforward on Carte-
sian meshes as it can be applied line-by-line in each dimen-
sion. Extensions to structured curvilinear meshes is also direct
(see, e.g., [19]) but will not be pursued here. Finally, as the
nonlinearities we consider here only contain undifferentiated
terms, they are naturally handled by the time integrators dis-
cussed below.

B. Staggered Summation by Parts Finite Differences

Traditionally SBP finite differences have been restricted to
nonstaggered grids but recently O’Reily and coauthors [20],
[22] have shown that SBP operators can also be formulated
on staggered grids. Given the popularity of the staggered
Yee scheme, we also consider discretizations using staggered
SBP operators. However, we note that the extension of stag-
gered SBP operators to curvilinear grids is challenging and we
will therefore limit the discussion here to 1-D problems.

Define the staggered grids x+ = [x0, x1, . . . , xn−1, xn] and
x− = [x0, x1/2, . . . , xn−1/2, xn]. On these grids SBP operators,
D+ ≡ R−1

+ Q+ and D− ≡ R−1
− Q− can be derived, [20]. Again,

R+ and R− are diagonal matrices and D+ and D− approximate
the derivatives on the grid x+ using values from x− and vice
versa. A crucial property of the operators is that they satisfy the
SBP identity:

Q+ +Q− =
(

ene
T
n − e0e

T
0

)

. (12)

As above, let {Eh, Ph, Jh} andHh be grid functions approx-
imating {E,P, J} and H , on the − and + grids, respectively.
We then approximate the derivatives according to

Ex ≈ D−E
h + σnR

−1
+ enE

h
n + σ0R

−1
+ e0E

h
0

Hx ≈ D+H
h

resulting in the semidiscretization

ε0ε∞Eh
t =

(

D+H
h − ε0J

h
)

(13a)

µ0Ht =
(

D−E
h + σnR

−1
+ enE

h
n + σ0R

−1
+ e0E

h
0

)

(13b)

Ph
t = Jh (13c)

Jh
t = −Jh/τ − ω2

0P
h + ω2

pE
h. (13d)

To derive a semidiscrete estimate, we multiply (13a)–(13d) by
(Eh)TR+, (Hh)TR−, (Ph)TR+, and (Jh)TR+, respectively,
and add them up. Using (12), the discrete energy identity
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becomes

1

2

d

dt

(

ε0ε∞(Eh)TR+E
h + µ0(H

h)TR−H
h

+
ε0ω

2
0

ω2
p

(Ph)TR+P
h +

ε0
ω2
p

(Jh)TR+J
h

)

= − ε0
ω2
pτ

(Jh)TR+J
h + (σn + 1)Hh

nE
h
n + (σ0 − 1)Hh

0E
h
0 .

An obvious choice for the penalty parameters is σn = −1 and
σ0 = 1. This yields an energy conserving discretization when
the relaxation time is τ = ∞.

C. Time Discretizations

After semidiscretization in space using SBP operators, the
evolution equations take the form of a system of ODEs y′(t) =
f(y(t), t), y(0) = y0. This system can be formally solved by
integrating in time

y(∆t)− y0 =

∫ ∆t

0

f(y(τ), τ) dτ (14)

where∆t > 0 is a suitable time step. The Picard form (14) can be
turned into a time-discrete numerical method by approximating
the integral using numerical quadrature. This procedure results
in implicit Runge–Kutta methods that require the resulting
nonlinear system of equations to be solved at each time step.
Here we employ the so-called SDC methods [5], on the form
analyzed in [6] to iteratively solve these nonlinear equations.
This is done at each iteration in which the candidate solution
is improved by evolving the correction using the forward Euler
method with time steps corresponding to the distance between
the quadrature points (note that an implicit or implicit–explicit
method could also be used for the correction, see [6] for details).
When using a s-point Gauss–Legendre quadrature, it was shown
in [6] that the error in the fixed point iteration is accurate to order
2s after 2s− 1 corrections. Unless explicitly stated, this is the
number of iterations we will use in our numerical computations
below. We note that, as the nonlinear system of equations is
only solved approximately, the symplectic properties of the
Gauss–Legendre Runge–Kutta method will, in general, be lost.
Using additional corrections improves the symplectic properties
but does not increase the order of accuracy. An advantage with
SDC methods compared to explicit Runge–Kutta methods is that
they can easily attain high order of accuracy. In addition, since
we exclusively use forward Euler for the correction iteration the
complexity and implementation of the method is very similar to
an explicit method.

Of course as our discretization is of method-of-lines type,
other time integrators may also be used. For example, in some
of the numerical examples below, we use the classic fourth-order
Runge–Kutta method as well as Taylor series.

The constraints on the allowable timesteps depend both on
the SBP operator that is used and on the time-stepping method.
Typically, increasing the order of accuracy of the SBP operators
reduces the timestep slightly while increasing the order of the
timestepper increases the allowable timestep linearly with order.

TABLE I
COMPUTED RATES OF CONVERGENCE IN Ex FOR THE PROBLEM

DESCRIBED IN SECTION IV-A1

Fig. 2. Left: Difference in energy between subsequent time steps. Right: Drift
away from initial energy. Here the notation SDCP refers to aP th order accurate
SDC method with P/2 Gauss nodes. Note that the En in the figure refers to
energy.

The constraints on the timesteps for the methods we propose are,
in general, slightly stricter than those for traditional FDTD.

IV. NUMERICAL EXAMPLES

A. Nonstaggered Discretization in Two Dimensions

In this section, we present numerical examples using non-
staggered SBP operators in two dimensions. To this end, we
will use the sixth-order accurate in the interior and third-order
accurate on the boundary operator by Strand [17] and choose
the free parameter x1 = 0.70127127127127 (defined in [17]). It
is known (see, e.g., [1]) that the order of accuracy of this SBP
operator is 4 in the L2 norm. Note that we used normalized units
until the very last numerical example.

1) Self-Convergence: To test our method and imple-
mentation we perform a self-convergence study for a
single material using the PMD model with parameters
µ0 = 1.2, ε0 = 1.1, ε∞ = 1.0, τ = ∞,ω2

0 = 1.5, ω2
p =

1.2, NPMD = 2, λ0 = 1, λ2 = 1, λ4 = 100. The computational
domain is the square (x, y) ∈ [−3/2π, 3/2π]2.

At the initial time all the fields are set to to zero, except Hz

which we take to be the trigonometric function

Hz(x, y) = sin(x) sin(y).

We evolve the solution until time t = 1 and compute the error
in Ex (the other fields have very similar behavior) on a grid
withh = 3π/40 against a reference solution withh = 3π/1280.
To evolve in time we use a sixth-order accurate “explicit” SDC
method with Gauss–Legendre nodes with a time step∆t ≈ 0.3h.
The results, which can be found in Table I, clearly show that the
method is fourth-order accurate.

2) Energy Conservation: We repeat the same computation
as in the previous convergence study but set the final simu-
lation time to be t = 50 and compare the preservation of the
discrete SBP version of the energy E(t) from (7). In Fig. 2,
the difference in energy between two subsequent time steps is
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Fig. 3. Left: Time history of the Ex field for the last 15 time units. Right:
Spectrum for the different values of λ4. The upper curves are offset by factors
of 100 from the blue curve.

plotted using SDC with 1, 2, and 3 Gauss–Legendre nodes. As
discussed above the underlying Gauss–Runge–Kutta methods
are symplectic, their SDC approximation is not, and neither is
guaranteed to preserve a general energy. This can be observed in
Fig. 2 which illustrates that the conservation of energy increases
with increasing order of accuracy.

3) Behavior at Longer Times and Stronger Nonlinearity:

Next we perform simulations until time t = 200, on the same
domain as above and with the same initial data but with the
material parameters µ0 = 1.2, ε0 = 1, ε∞ = 1, τ = ∞, ω2

0 =
16, ω2

p = 16, λ0 = 1, λ2 = 0. This corresponds to the linear
Lorentz model. We control the nonlinearity by changing λ4, i.e.,
by changing to the PMD model with NPMD = 2. Here we are
interested in demonstrating the generation of higher harmonics
as the nonlinearity controlled by λ4 is increased according to
λ4 = 0, 1, 10, 100. To keep the error in the solution small, we
use grids with 1612 gridpoints for the first three values of λ4,
and 3212 for the last value. We note here that the larger number
of gridpoints required for the larger nonlinearity is not due to
stability but due to the smaller length and timescales created
by the stronger nonlinearity. We also use three Gauss–Legendre
nodes in the SDC for the three first values and three nodes for the
last. In Fig. 3, we display theEx field sampled in a point 1/4 along
the diagonal from the lower left to the upper right corner. The
displayed solution is for the last 15 time units in the computation
and for the different values ofλ4. The figure shows how the larger
values of λ4, corresponding to stronger nonlinearity, introduce
small oscillations. To quantify this further, we perform a Fourier
transform of the signals and plot the spectrum (see Fig. 3).

For the linear model with λ4 = 0, there are two primary fre-
quencies, the Duffing (anharmonic) oscillator and the standing
mode solution of the free space Maxwell’s equations. These are
clearly displayed in the blue line in Fig. 3. For the smallest
value, λ4 = 1, there are only a few new harmonics generated,
two of them being in-between the two primary frequencies
but for the larger values of λ4 there is a significant and more
uniform generation of harmonics. However, even for the largest
nonlinearity, the solution at the final time is very close to a
standing mode of the free space problem.

B. Evolution of a Pulse in Different Materials

To demonstrate some different wave propagation behav-
iors that can be modeled by the Maxwell–Duffing models we
consider the evolution of a simple initial data consisting of a

Fig. 4. Outward propagating wave fronts resulting from a magnetic monopole
initial data for four different materials.

magnetic monopole

Hz(x, y, 0) = exp
(

−36(x2 + y2)
)

.

The computations are performed on a square domain (x, y) ∈
[−2, 2]2 using a fine grid with h = 4/500 and a tenth-order SDC
method. The initial data is simulated until time t = 2 when we
take a snapshot of the Hz field.

The different materials we consider are (A) Maxwell’s equa-
tions in free space with µ0 = 1.2, ε0 = 1, ε∞ = 1, (B) a linear
Lorentz dispersive model withω2

0 = 1, ω2
p = 1, andλ0 = 1, (C)

a linear Lorentz dispersive model with ω2
0 = 1, ω2

p = 1000, and
λ0 = 1, and (D) a nonlinear PMD model with ω2

0 = 1, ω2
p = 1,

λ0 = 1, and λ4 = 1000.
In the four quadrants of Fig. 4, we display the solution at

the final time for the four different materials. The solution in
(A) displays the usual nondispersed outgoing cylindrical shape
traveling at speed 1. The main difference between the slightly
dispersive solution in (B) and the nondispersive solution in (A)
is that there is a slight residue of the initial data in the wake of
the wave.

For the material (C), the frequency combination makes the
wave essentially nonpropagating with the shape of the solution
at the final time being very close to the initial data but with
an amplitude that has decreased to 0.75 from 1. If this mate-
rial becomes nonlinear, as in (D), there are again propagating
wavefronts that travel at a much slower speed. In addition the
wave fronts are much more concentrated with the larger wave
traveling faster than the smaller wave.

In terms of performance, we note that for the solution to above
problem, each degree of freedom took around 0.2 µs to advance
one timestep on a MacBook Pro (2017) with an Intel Core i7
3.5 GHz processor. The code is written in modern Fortran and
compiled with -O3 optimization.

1) Multiblock Method. Self-Convergence: To study the con-
vergence properties for the coupled solver, we simulate
Maxwell’s equations with material constants set to unity in
a domain consisting of three blocks coupled by the interface
conditions discussed in Section III, of unit size and with the
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TABLE II
SELF-CONVERGENCE OF THE MULTIBLOCK SOLVER FOR MAXWELL’S

EQUATIONS IN A NONPOLARIZED MATERIAL WITH β = 0, γ = 1 (TOP), DATA

IS FOR β = 0, γ = 0.5 (MIDDLE), AND β = 0.5, γ = 0.5 (BOTTOM)

TABLE III
SELF-CONVERGENCE FOR A NONLINEAR MODEL. HERE β = 0, γ = 0.5

lower left corner of the leftmost block in (−1, 0). The blocks
thus occupy the domain (x, y) ∈ [−1, 2]× [0, 1]. The initial data
is taken to be zero for all fields but for Hz which we take to be

Hz(x, y, 0) = exp(−144(x2 + (y − 0.5)2).

The initial data is evolved for five time units and we compute the
error at the final time in the Hz field using a reference solution
obtained with h = 1/640. We report the L2 errors for solutions
on grids with h = 1/20, 1/40, 1/80, and 1/160. Throughout
the experiments with the multiblock method, we use the classic
Runge–Kutta method of order four, and in this experiment we
set the time step to be ∆t = 0.6 h.

In Table II, we report the errors and the observed rates of con-
vergence (computed as the base 2 logarithm of the ratios of the
errors in subsequent grid refinements) for different combinations
of γ and β in the SAT. The two uppermost results are for energy
conserving (β = 0) discretizations and would correspond to
alternating and central flux in a DG setting. Here, unlike in
the DG setting where alternating fluxes typically outperforms
central fluxes, the difference between alternating (γ = 1) and
central (γ = 0.5) averaging is not very pronounced in either the
absolute error levels or the rates of convergence. The addition of
a slight penalization of a jump at the interface between blocks
(β > 0) also does not appear to impact the overall error levels
much.

Finally, in Table III, we repeat the above self-convergence
experiment in a nonlinear material with ω2

0 = 16, ω2
p = 16, and

λ0 = 1 in all blocks and with λ2 = λ4 = 1 and λ2 = λ4 = 2
in the middle and rightmost block, respectively, (λ2 and λ4 are
zero in the leftmost block). The results do not differ much from
those obtained in a nonpolarized material confirming that the
high order of accuracy of the proposed method also holds in the
presence of nonlinearity.

2) Multiblock Domain. A Nonlinear Waveguide: As an ex-
ample with multiple blocks, we consider a waveguide-like struc-
ture occupying the domain (x, y) ∈ [0, 5]× [0, 1], which we
discretize with five blocks of unit size with Cartesian equidistant
grids with grid size h = 1/400. Time-stepping is the same as in

Fig. 5. Snapshots of the magnetic field at time 5. From top to bottom the
frequency used in the simulations are 20, 35 and 50.

the previous example. Throughout we set µ0 = ε0 = ε∞ = 1
and in the domain (x, y) ∈ [2, 3]× [0, 1] we place a material
with ω2

0 = 1, ω2
p = 1000, λ1 = 1, and λ2 = 10.

To illustrate the effect of the nonlinear material for different
frequencies, we add the solenoidal forcing

(

y − 0.5

0.5− x

)

502 sin(ωt)e−200((x−0.5)2+(y−0.5)2)

to the evolution equations for equations for (Ex, Ey)
T . The

simulation is started from rest and we impose PEC boundary
conditions on all sides.

In Fig. 5, we display the Hz field at time t = 5 for ω = 20,
35, and 50. It is clear that the nonlinear material acts as a pass
filter that effectively blocks lower frequencies and allows higher
frequencies to propagate. In addition the nonlinear inset appears
to make the waves propagate primarily in the x direction.

Even though these simulations have close to a million grid
points they run in a few minutes on a serial laptop computer.
Rapid simulations with the ability to simulate material inter-
faces in an accurate, stable and efficient manner opens up the
possibility to design multiphysics and multiscale materials and
devices via PDE constrained optimization.

C. Staggered Discretization in One Dimension for a Unit-Step

Modulated Sine Wave in a Linear Lorenz Medium

As a final example, we perform the experiments depicted
in [2, Figs. 3 and 4]. In those experiments, a linear Lorentz
model withω0 = 4× 1016rad/s,ωp =

√
20× 1016rad/s, τ =

0.5/0.28× 1016s is subject to a unit-step modulated sine wave
boundary condition at x = 0. In Fig. 6, we display the same data
as in [2, Figs. 3 and 4] for a few different grid resolutions with
the sixth order. We note that the results agree qualitatively with
those in [2] but that there are slight differences. In particular,
in the right plot in Fig. 6, we note that the right part of the
signal is different. Since [2] does not provide much detail of the
simulations, it is hard to assess how accurate the results in [2]
are; but as we see grid convergence in our high-order accurate
simulations, we have some confidence that they are correct.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on June 03,2020 at 22:50:15 UTC from IEEE Xplore.  Restrictions apply. 



336 IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, VOL. 4, 2019

Fig. 6. (Left) The electric field at x = 1µm due a unit-step modulated sine
wave with carrier frequency ωc = 1016 rad/s. (Right) The electric field at
x = 10µm.

V. CONCLUSION

In this article, we considered the Duffing models for polar-
ization that incorporate both nonlinearity and dispersion. The
general N th-order polynomial Maxwell–Duffing model has an
associated energy estimate that guarantees well-posedness of the
continuous model, while including polynomial approximations
to an exponential Duffing model and also including the linear
Lorentz dispersive model as a special case.

We have presented the construction of novel summation by
parts finite-difference time-domain (SBP-FDTD) methods for
the numerical discretization of the Maxwell–Duffing models
and derived energy estimates for the semi discrete methods
that are analogous to the continuous energy estimates. Even
though there is no fully discrete energy estimate, our fully
discrete methods based on a variety of time integrators have
been shown to preserve a general energy-guaranteeing stability
of the associated SBP numerical discretizations. In our previous
works on energy stable discretizations for Kerr- and Raman-type
nonlinearities [4], [14], we showed that the strength of the non-
linearity in the polarization model does not affect fully discrete
energy stability. We intend to perform similar analyses for the
Duffing models in future research.

The performance of the proposed SBP-FDTD methods were
demonstrated in several numerical experiments. There are many
avenues for future research. For example, one can investigate
nonlinear optical phenomenon such as third harmonic genera-
tion. For example, in one of the numerical experiments we ob-
served that even in the presence of strong nonlinearity, coherent
structures, like the standing mode we used as initial data, are
robust to the nonlinearity.
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